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Abstract

We study the formation and evolution of chaotic breathers (CBs) on the Fermi–Pasta–Ulam oscillator chain with quartic
nonlinearity (FPU-β system). Starting with most of the energy in a single high-frequency mode, the mode is found to breakup
on a fast time scale into a number of spatially localized structures (CBs) which, on a slower time scale, coalesce into a single
CB. On a usually longer time scale, depending strongly on the energy, the CB gives up its energy to lower frequency modes,
approaching energy equipartition among modes. We analyze the behavior, theoretically, using an envelope approximation
to the discrete chain of oscillators. For fixed boundaries, periodic nonlinear solutions are found. The numerical structures
formed after the fast breakup are found to approximate the underlying equilibrium. These structures are shown, theoretically,
to undergo slow translational motions, and an estimated time for them to coalesce into a single chaotic breather are found to
agree with the numerically determined scaling τB ∝ E−1. A previously developed theory of the decay of the CB amplitude to
approach equipartition is modified to explicitly consider the interaction of the breather with background modes. The scaling to
equipartition of Teq ∝ E−2 agrees with the numerical scaling and gives the correct order of magnitude of Teq. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Coupled oscillator chains form good test systems for investigating energy exchange among degrees of freedom
[1]. In particular, the Fermi–Pasta–Ulam (FPU) system, consisting of a set of equal masses coupled to nearest
neighbors by nonlinear springs, has been extensively studied [1–11,14,18,19,25,26]. Starting with energy initially
in a low-frequency mode, Fermi et al. [2] observed, for low energies, that the oscillators did not relax to the
equipartition state, but displayed recurrences which were later explained in terms of beating among the system
modes [1,3]. A theoretical prediction of a threshold to fast equipartition by mode overlap [4] was subsequently
qualitatively confirmed by studies of energy thresholds required to give approximate equipartition among modes
[5–7]. A weaker mechanism that also led to equipartition on a slower time scale has also been studied [8–10]. With
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initial energy in a low-frequency mode, it was shown in [9] that the resonant interaction of a few low-frequency
modes can lead to a local superperiod beat oscillation that is stochastic, transferring energy to high-frequency modes
by diffusion. With increasing local energy, there is a transition from exponentially slow transfer to a time scale that
is inversely proportional to a power of the energy density.

The FPU-β system with quartic nonlinearity can be approximated, for low-frequency mode initial conditions, by
the MKdV equation, which admits a soliton solution, that can become unstable with increasing energy [11,25]. This
instability roughly coincides with the creation of stochastic layers in the beat oscillations [9]. The close connection
between the development of stochastic layers in beat oscillations and instabilities in nonlinear structures was also
noted for the discretized sine-Gordon equation, consisting of pendula coupled by linear springs [12,13]. In [12],
it was numerically found that the breakup of a nonlinear structure, starting from a high-frequency mode initial
condition, occurred at higher energy and on a slower time scale than from energy initially in a low-frequency mode.

A partial understanding of this increased stability came from a series of analyses of breather-like structures on
discrete systems that admitted exact breather solutions [14–19,26,27]. High-frequency mode initial conditions have
symmetry of neighboring oscillators close to that of localized breathers. The resulting dynamics consists of three
stages. First, there is an initial fast stage in which the mode breaks up into a number of breather-like structures.
Second, on a slower time scale, these structures coalesce into one large unstable structure. These structures have been
called chaotic breathers (CBs) [18]. Since a single large CB closely approximates a stable breather, the final decay
stage, toward equipartition, can be very slow. This behavior has been observed in oscillator chains approximating the
Klein–Gordon equation with various force-laws [15–17,27], e.g., the discretized sine-Gordon equation [17], and,
more relevantly for this paper, the FPU-β model [14,18,19,26]. In [14,18,26], the energy was placed in the highest
frequency mode with strict alternation of the amplitudes from one oscillator to the next. This configuration is stable up
to a particular energy beyond which a parametric instability occurs, leading to the events described above [14,18,26].
However, the nonlinear evolution does not depend on special initial conditions, but will generically evolve from any
high-frequency mode initial condition that has predominantly the alternating amplitude symmetry [19]. One does
not know, in this generic situation, whether there exists any true energy threshold to achieve equipartition, although
there appears to be some numerical evidence for such a threshold in the discretized sine-Gordon system [12].
However, as discussed extensively with respect to low-frequency mode initial conditions, the practical thresholds
refer to observable time scales [9,10]. From a phase-space perspective it is intuitively reasonable that for a large
number of oscillators and not too low an initial energy, the generic set of initial conditions will lie in a chaotic layer,
but the chaotic motion can remain close to a regular orbit for very long times [1]. The scaling with energy density of
the time to equipartition has been estimated, for high-frequency initial conditions, from the interaction of beat modes
[19] using a procedure developed to calculate the equipartition time from low-frequency initial conditions [20]. The
result gave the numerically observed scaling but strongly underestimated the time, which is at least partially related
to the transient formation of the breather [19].

Considerable insight into the behavior of a nonlinear oscillator chain, starting from high-frequency mode initial
conditions, can be obtained by introducing an envelope function for the displacements of the oscillators. The initial
conditions for the envelope only contain long wavelength perturbations. For the envelope function, an expansion
is then possible to obtain a nonlinear partial differential equation (PDE) which approximates the behavior of the
discrete system [21,22,28]. Low-order expansions of this type produce PDEs that have integrable solutions in the
form of envelope solutions, analogous to the solutions produced from low-frequency initial conditions [21,28].
Higher order terms destroy the integrability, but some discretized oscillator chains can have localized exact breather
solutions [16,17,27]. Thus we might expect the results, obtained from higher order expansions, to approximate
breather solutions that may, however, be weakly unstable.

The envelope function expansion procedure has been applied to the FPU-β system to explore the nonlinear long
wavelength solution, its modulation instability, the localization into proto-breathers, and their coalescence into a
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single chaotic breather [22]. These results were mainly limited to the small-amplitude nonlinear solution, which
therefore limited the range of applicability. The initial breakup of the high-frequency mode was also calculated
only for periodic boundary conditions, i.e. for the highest mode number for which the initial envelope function is
uniform [22,23]. These limitations led to results that, while qualitatively significant, do not agree quantitatively with
numerical results in the usually explored energy density ranges or with oscillator chains with fixed ends [18,19].

In the following sections, we first present the basic equations of the chain in oscillator and normal mode forms. We
then use expansions to obtain the envelope equation. Then, in Section 3, we obtain solutions of the envelope equations
valid for arbitrary amplitude. In Section 4, we observe the fast numerical evolution of the discrete equations for a
range of energies and initial periodicities of the envelope. Section 5 considers coalescence of the chaotic breathers
that are formed in the relaxation process. In Section 6, the mode picture of the energy transfer mechanism is modified
to specifically take into account the beating between background low amplitude modes and the breather, to obtain
an estimate of the breather decay time.

2. Basic equation and initial conditions

The Hamiltonian function of the FPU-β model of N oscillators can be written in the form

H =
N∑
i=0

[
1

2
p2
i + 1

2
(qi+1 − qi)2 + β

4
(qi+1 − qi)4

]
, (1)

d2qi

dt2
= qi+1 + qi−1 − 2qi + β[(qi+1 − qi)3 − (qi − qi−1)

3], i = 1, 2, . . . , N. (2)

The dimensionless factor β is in a standard form traditionally used in publications for the FPU-β model. We choose
β = 0.1 to correspond to previous papers and thus facilitate comparison with the results of other studies. The choice
of β rescales the dimensionless variables and the energy of the system.

The Hamiltonian function (1) consists of quadratic part Hh which describes the harmonic oscillations, and
anharmonic quartic potential proportional to β. With fixed boundaries a canonical transformation of Hh gives N
independent normal modes Pj ,Qj

Qj =
(

2Ωj
N + 1

)1/2 N∑
i=1

sin(kij)qi, (3)

Pj =
(

2

Ωj(N + 1)

)1/2 N∑
i=1

sin(kij)pi, (4)

such that the linear part of the Hamiltonian becomes

Hh =
N∑
j=1

Ωj

2
(P 2
j +Q2

j ), (5)

where

Ωj = 2 sin

(
1

2
kj

)
, k = π

N + 1
, j = 1, 2, . . . , N. (6)
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The reverse transformation is

qi =
(

2

N + 1

)1/2 N∑
j=1

sin(kij)
Qj

Ω
1/2
j

, (7)

pi =
(

2

N + 1

)1/2 N∑
j=1

sin(kij)Ω1/2
j Pj . (8)

Index i is used for functions describing oscillators, while j is used to label the variables related to the normal modes.
Transformations (7) and (8) automatically satisfy boundary conditions p0 = pN+1 = q0 = qN+1 = 0.

For numerical integration, initial conditions are usually chosen such that at t = 0 only one or a few normal modes
are excited. Due to the anharmonic coupling some energy is transferred throughout the spectrum.

To excite specifically, a single normal mode with the frequencyΩγ , the displacements of the oscillators and their
momenta are chosen at t = 0 in accordance with (7) and (8). The total energy E is shared between kinetic and
potential parts of (5) such that if a fraction f is delivered to the kinetic energy P 2

γ (0) = 2fE/Ωγ , the rest is placed
in the potential energy

Q2
γ (0) = 1

6βΩγ

(√
24βE(1 − f )(N + 1)+ (N + 1)2 −N − 1

)
. (9)

Expression (9) is calculated with the help of (1) and takes into account the anharmonic term not included in (5).
Correspondingly, the initial displacements and velocities of the oscillators are as follows:

qi(0) =
(

2Q2
γ (0)

Ωγ (N + 1)

)1/2

(−1)i+1 sin

(
π in

N + 1

)
, (10)

q̇(0) = pi(0) =
(

2P 2
γ (0)Ωγ

N + 1

)1/2

(−1)i+1 sin

(
π in

N + 1

)
. (11)

We will mostly treat the caseN = 128 with initially excited mode γ = 120. We principally examine cases with γ in
the upper part of the spectrum so that n = N + 1 −γ � N + 1. Note that for these cases, the characteristic times of
the initially excited modes correspond to a period T � π , e.g., the frequencyΩ120 � 2. In numerical calculations,
a small fraction of the total energy (10%) is usually placed into two satellites γ − 1 and γ + 1 to speed up the initial
phase of the relaxation; however, this does not play an important role in long term behavior of the system.

A typical profile of initial displacements (10) is shown in Fig. 1 for the case E = 50, f = 0, γ = 120,
exhibiting the fast variations of qi from one oscillator to another characteristic of high γ modes. As in previous
studies [21,22,28], to remove this fast variations we introduce the envelope function ψi(t) = (−1)iqi(t) which is a
slowly varying function of the number i. The profile of the complete envelope function corresponding to Fig. 1 is
illustrated in Fig. 2. The smooth spatial profile of ψ makes possible the use of a continuous approximation where
the oscillators are described by the continuous variable x = ai, where a is the lattice period. Taylor’s expansion
then gives

ψ(x ± a) = ψ(x)+ ψx(x)(±a)+ 1
2ψxx(x)a

2 + 1
16ψxxx(x)(±a)3 + 1

24ψxxxx(x)a
4 + · · · . (12)

Substituting (12) in (2) and collecting terms proportional to the different powers of a yields

ψtt +4ψ + 16βψ3 + a2{ψxx + β(12ψψ2
x + 12ψ2ψxx)} + a4{ 1

12ψxxxx + β(3ψ2
xψxx

+3ψψ2
xx + 4ψψxψxxx + ψ2ψxxxx)} + · · · = 0, (13)
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Fig. 1. Initial displacements qi for the first 30 oscillators (i = 1, 2, . . . , 30) out of N = 128 in the case E = 50, γ = 120, n = N + 1 − γ = 9.
The mode has the symmetry that left and right oscillators (with respect to the central one) have displacements of almost equal amplitude but
opposite sign.

where subscripts t and x stand for temporal and spatial derivatives of ψ(x, t). Linear terms with spatial derivatives
describe the dispersion (dependence of Ω on effective wavenumber πj/(N + 1) in (6)), while the nonlinear terms
produce a frequency shift, which drives a process of steepening of the envelope function. The combination results in
formation of localized states (CBs). This qualitatively explains why relaxation is accompanied by the formation of
sharply localized states if energy is initially deposited in the high-frequency part of the spectrum where the effect of

Fig. 2. The plot of the envelope functionψi = (−1)iqi (0) at initial time t = 0,N = 128,γ = 120. Nine extrema correspond ton = N+1−γ = 9.
The smooth decrease of ψi from left to right results from the fact that in numerical simulations a small amount of energy (∼ 10%) was placed
in two nearest neighbor modes γ = 119 and 121.
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dispersion is small, while only broad nonlinear structures are formed if the energy is initially in the low-frequency
modes where the dispersion is large.

3. Solutions for the envelope function

In (13), keeping terms up to the fourth power of a, introducing the dimensionless variable x → x/a (0 ≤ x ≤
N + 1) and assuming a monochromatic dependence ψ(x, t) = ψ(x) cosωt leads to an approximate equation for
ψ(x)

(−ω2 + 4)ψ +ψxx + β(12ψ3 + 9ψψ2
x + 9ψ2ψxx)+ 1

12 (ψxxxx + β(27ψ2
xψxx

+27ψψ2
xx + 36ψψxψxxx + 9ψ2ψxxxx)) = 0, (14)

where we have used the rotating wave approximation (RWA) cos3ωt = 3
4 cosωt + 1

4 cos 3ωt , dropping terms
proportional to cos 3ωt [21,22,28]. Neglecting terms proportional to β yields a linear equation for the eigenmodes:

(−ω2 + 4)ψ + ψxx = 0. (15)

Solving this equation for ψ(x) with zero boundary conditions at x = 0 and x = N + 1 gives a set of eigenmodes
which correspond to the high-frequency linear normal modes of the discrete FPU chain

ψ(0)n (x) = ψmn sin qnx, (16)

ω2 = 4 − q2
n, qn = π(N + 1 − γ )

N + 1
= πn

N + 1
(17)

withψmn ≡ ψmax,n, where n = N+1−γ � N+1. Superscript (0) indicates that (16) is a solution to the linearized
equation (15).

The reduced (with all terms of order a4 dropped) nonlinear equation (14) has exact analytical solutions, ψ(x),
which are periodic functions of x. A subset of these solutions have q = 0 at x = 0, N + 1, which are a natural
generalization of the linear solutions for the case when nonlinear effects are important. These envelope functions
have the same spatial periodicity as the corresponding linear modes (16). However, their profiles are not sinusoidal
and the frequency of oscillations has a nonlinear shift. Multiplying (14) by ψx , and integrating over x yields a first
integral

(−ω2 + 4)ψ2 + ψ2
x + β(6ψ4 + 9ψ2ψ2

x ) = C1, (18)

where all terms of order a4 have been dropped.
This function describes a family of solutions which depends on two parameters, C1 and ω. Eq. (18) has been

examined in the special case, where C1 is chosen such that ψx = 0 at ψ = ψmax and ψ = ψmin [22]. We consider
more general cases assuming that ψx = 0 at ψ = ψmax but not necessarily at ψ = ψmin (see, e.g., solution (16) for
n = 1). Normalizing ψ(x) to the maximum value ψm ≡ ψmax, and introducing a new function f (x) ≡ ψ(x)/ψm

one can rewrite (18) in the form of energy conservation for a particle in a potential U(f )

1
2f

2
x + U(f ) = 0, (19)

where f 2
x plays role of kinetic energy,

U(f ) = −3βψ2
m(1 − f 2)(f 2 + C2)

(1 + 9βψ2
mf

2)
, (20)
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Fig. 3. Graphs of the effective potential energy U(f ) as a function of f , 0 ≤ f ≤ 1, for three values of the constant of integration C2.

and the total energy is zero. In transforming from (18) to (19), (20) the relation fx = 0 at f = 1 is used and a new
constant C2 = (4 − ω2 + 6βψ2

m)/6βψ
2
m is introduced, with C1 = 6βψ4

mC2. The graphs of U(f ) are illustrated
in Fig. 3, for three different values of the constant C2 (C2 = −0.9, 0, 0.9). Intersections of these graphs with the
horizontal line E = 0 show that in the case of positive C2 (e.g., C2 = 0.9) solutions ψ(x) are oscillating functions
of x which vary between minimum −ψm and maximum ψm values. C2 = 0 corresponds to the special separatrix
solution which is represented by the single localized breather with ψ(x)→ 0 at x → ±∞ and frequency

ω2
B = 4 + 6βψ2

m. (21)

For negative C2 solutions ψ(x) vary between two nonzero positive/negative boundaries ψmax and ψmin with fre-
quencyω2 = 4+6β(ψ2

min +ψ2
max). This third family of solutions is related to the case of periodic nonzero boundary

conditions, q1 = qN+1, mentioned above. In particular,C2 = −1, is the π mode for which each oscillator has oppo-
site phase and equal amplitude as its neighbors; correspondingly, the envelope function ψ = ψmax = ψmin = ψm.
In this case, the nonlinear frequency shift reaches a maximum value

ω2 = 4 + 12βψ2
m. (22)

To satisfy boundary conditions of zero displacements at x = 0 and x = N+1, the first case (positiveC2) is required
since it is the one which periodically passes though the point where ψ = 0. The spatial period of these oscillations
is given by∫ 1

0
df

(
df

dx

)−1

= Λ

4
. (23)

The dispersion relation (23) determines the spectrum of the frequencies ω as a function of n and ψm. Substituting
fx from (19) in (23) and using a new variable sin α = f , (23) can be written in the form

I (r, ψm) = 2

π

∫ π/2

0
dα

(
1 + 9βψ2

m sin2α

sin2α + r2

)1/2

=
√

6βψ2
m

(
N + 1

πn

)2

, (24)
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where we have substituted 1
4λ = (N + 1)/2n on the RHS. The factor r2 ≡ C2 = (4 − ω2 + 6βψ2

m)/6βψ
2
m has

been introduced as a positive quantity to insure convergence of the integral. The parameter

w(n,ψm) = 6βψ2
m

(
N + 1

πn

)2

(25)

on the RHS of (24) gives the relative effect of the nonlinear frequency shift to the linear frequency shift.
In the case of weak nonlinearity with w � 1, w is balanced by the integral in the LHS with r � 1. In this limit,

I (r, ψm) ∝ 1/r , yielding a discrete spectrum of eigenfrequencies

ω2
n = 4 + 6βψ2

m − π2n2

(N + 1)2
(26)

with the nonlinear correction 6βψ2
m added to the linear case (17). In the opposite limiting case,w(n,ψm)� 1,w is

balanced by the LHS if r � 1. Asymptotically, expanding the LHS for r � 1 yields a logarithmic dependence on r
in the leading approximation of I (r, ψm) (A.2). Substituting (A.3) in (24) yields the spectrum of the eigenfrequencies
valid in the case of strong nonlinearity

ω2
n = 4 + 6βψ2

m

{
1 − 16

1 + 9βψ2
m

exp

[
−
√

6βψ2
m

(
N + 1

n
−

√
6 arcsin

√
9βψ2

m

1 + 9βψ2
m

)]}
. (27)

The factor r2 is given by the second term in curly brackets, which is exponentially small, r2 ∝ exp(−w/π).
The spatial profiles of the nonlinear eigenfunctions ψ(x) are determined by integrating (19) and (20), having an

upper limit given by arcsin(ψ/ψm) and zero boundary condition at x = 0,

x(ψ) = 1√
6βψ2

m

∫ arcsin(ψ/ψm)

0
dα

(
1 + 9βψ2

m sin2α

sin2α + r2

)1/2

, 0 ≤ x ≤ 1
4Λ. (28)

Eq. (28) definesψ(x) in 0 ≤ x ≤ 1
4Λ. It is symmetrically continued from 1

4Λ to 1
2Λ, then antisymmetrically reflected

from 1
2Λ toΛ, and periodically continued over the entire chain. The resulting graphs of ψn(x) are plotted in Fig. 4a

and b together with the profiles of equivalent linear modes (16) for typical values N = 128, n = 9, β = 0.1 and
two amplitudes ψm = 0.45 and ψm = 1.85, respectively. These values correspond to relatively weak and relatively
strong nonlinearity, w(9, ψm) � 3 and w(9, ψm) � 50, respectively (note that (26) is not satisfied for w � 3, so
the solution from (24) is used). The linear profiles (16) are used as initial conditions in numerical studies. In the
process of relaxation, these initial profiles might be expected to approach the equivalent envelope solutions (28)
of the same periodicity and total energy. Due to conservation of energy, the amplitudes of the envelope solutions
(28) are higher than the initial values. In the weakly nonlinear case (a) the difference is small, while in the strongly
nonlinear case (b) the difference is large because the nonlinear peaks are much narrower than the initial sinusoidal
profiles. Numerical calculations presented in the next section show that the periodicity may be broken in the process
of relaxation such that the only link between initial and final states is the conservation of energy. The periodic
envelope solution (28) with n = 1 looks similar to the single breather in an infinitely long chain, which is obtained
from (28) in the limit N → ∞. Putting r = 0 and rearranging the limits of integration in accordance with zero
boundary conditions at infinity, yields

x(f ) = 1√
6βψ2

m

∫ π/2

arcsin f

dα

sin α
(1 + 9βψ2

m sin2α)1/2, 0 ≤ x < +∞. (29)

For the low amplitude case, 9βψ2
m � 1, integral (29) is simplified giving

ψB(x) = ψm cosh−1(
√

6βψmx), (30)
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Fig. 4. (a) Comparison of the weakly nonlinear envelope solution (28) (solid line) with the equivalent profile of the normal mode (16) (dashed
line) with energy E = 20 and symmetry n = 9. Since the factor w � 3 is not too large, the curves are close to each other. (b) Comparison of
the strongly nonlinear envelope solution (28) (solid line) with the equivalent profile of the normal mode (16) (dashed line) at energy E = 200
and symmetry n = 9. The large value of w � 50 makes the curves significantly different.

while in the large amplitude case, 9βψ2
m � 1, (29) describes, asymptotically, the breather of finite width d � 5

(five oscillators)

ψB(x) = ψm cos
√

2
3x, −π

√
3
8 < x < π

√
3
8 . (31)
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The energy of the envelope solutions is given by Eq. (B.4). The first two terms are calculated at the boundaries and
cancel each other because of the spatial periodicity of the modes. Substituting (18) and (19) into (B.4), expressing
ω2 in terms of r2 and transforming the variable of integration as in (24) yields an expression for the energy

E = 2nψm√
6β

∫ π/2

0
dα

(
1 + 9βψ2

m sin2α

sin2α + r2

)1/2 (
3βψ2

m sin4α + 2 sin2α − 3

2
βψ2

mr
2
)
. (32)

The integral in (32) is simplified and calculated analytically in two limiting cases. If ψm is sufficiently high that,
w(n,ψm) � 1, nonlinear effects are dominant in comparison with the effect of dispersion and according to (24),
r → 0. Substituting r = 0 in (32), the integral is calculated exactly and defines a functionZ(y)with y = βψ2

m. The
explicit expression forZ(y) is given by (B.5) and (B.6). Although we are only considering large nonlinear frequency
shift (with respect to the dispersion), we still have subcases y � 1 and y � 1 which we call, respectively, large and
small amplitude nonlinear envelopes. In the first, large amplitude subcase, the asymptotic expansion of Z(y) yields

E = 9π
√

6nβ

16

(
ψ4
m − 2

3π
√
β
ψ3
m

)
, 1 �

√
6βψ2

m, (33)

where theψ3
m term is the next order correction to the leadingψ4

m term. The energy is mostly due to the quartic β term
in the potential energy (1). The envelope function and energy are concentrated in n narrow periodically distributed
peaks each consisting of 4–5 oscillators, while in wide areas between the peaks oscillations are exponentially small.
In the second, small amplitude, subcase the leading terms in the expansion of Z(y) yield

E = 4n√
6β
(ψm + 4βψ3

m),
πn

N + 1
�
√

6βψ2
m � 1, (34)

where the ψ3
m term is the next order correction to the leading ψm term. The energy is mostly due to the quadratic

term in the potential energy (1). It is also localized in n periodically distributed peaks but the width of the peaks
and, correspondingly, the number of oscillators in each of them are inversely proportional to ψm. This results in the
linear dependence on ψm in (34).

If the amplitude ψm is sufficiently low that
√

6βψ2
m � πn/(N + 1), the oscillations become nearly linear. As

in obtaining (26), the factor r is now much greater than one and integral (32) can be calculated in the limit r → ∞
yielding

E

N + 1
= ψ2

m

(
1 − π2n2

4(N + 1)2

)
,

√
6βψ2

m � πn/(N + 1)� 1. (35)

The quadratic energy dependence on ψm again results from the quadratic term in the potential energy (1) with a
maximum value of 2ψ2

m in a single oscillator, and a factor of 1
2 is introduced from the nonuniform profile of the

envelope function. This regime is equivalent to the discreet normal mode solution, which represents initial conditions
used in numerical calculations in the case when all energy is placed at t = 0 in the potential energy.

4. Fast evolution from initial states

For most numerical studies of oscillator chains, the initial state imposed on the system is mainly that of a single
linear mode. This state is generally not close to an equilibrium. The initial state rapidly relaxes, governed by the
nonlinear equations. The evolution may be influenced by the underlying stability of nearby equilibria, but cannot
be analyzed directly as perturbations around those equilibria. It is also possible to prepare the initial conditions to
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be close to an equilibrium and consequently to directly analyze linear stability, but the results of such an analysis,
while interesting, are only indirectly relevant to our nonlinear evolution. We study that situation in a separate paper.
Preliminary studies indicate that the CBs that are formed in the nonlinear processes are probably marginally stable,
which accounts for their long-lived existence.

One special case that can be solved for the unstable motion is that of periodic boundary conditions with the
energy placed in the highest frequency mode (the π -mode) [23]. For this case, the unperturbed envelope function
is uniform (does not depend on x) which simplifies the analysis. Then in the limit of small fm, y � 1, the values
of the fastest growing wavenumber km and the corresponding growth rate sm were found in [22] to be

km =
√

12βψm, sm = 3βψ2
m. (36)

In the opposite limit of large amplitudes, y � 1, the fastest growing mode wavenumber and maximum growth rate
can also be calculated, and are found to be

km = 1.23, sm = 0.93
√
βψm. (37)

In contrast to the case of the low amplitude results in (36), at large amplitude km is independent of the amplitude
and sm is a linear function of ψm. Comparing (36) and (37) we see that the transition from small to large amplitude
takes place at βψ2

m � 1
9 that corresponds, for β = 0.1, to ψm � 1.

The modulation instability of the more general envelope solutions obtained in Section 3 requires a more compli-
cated analysis. We will present analytic results in a separate paper; numerical methods are used below to qualitatively
understand the fast initial relaxation.

The numerical treatment of stability is based on integration of the 128 equations of motion (2) for a 128 oscillator
chain, with initial conditions qi(0) = q

(B)
i + δqi, pi(0) = 0. Functions q(B)i describe the unperturbed breather

profile and are chosen either from the continuous model in the form of approximation (30) for ψm < 1 or as a
breather solution of the discrete FPU model for ψm > 1. Low and high amplitude initial profiles are centered in
the middle of the chain at x = 64.5. In all cases small (� 10%) perturbations with the wavelength of the fastest
growing mode from (36) or (37) are added at t = 0 to speed up the instability. The time of integration is chosen to
be 10 times longer than the inverse growth rate from (36) or (37). Results of these calculations show no significant
time variations of the initial profiles over a wide range of amplitudes, 0.1 < ψm < 10. These numerical results
confirm stability of the nonlinear envelope solutions (28) with n = 1. In the low amplitude limit, w(n,ψm) < 1,
the inequality is equivalent to the condition of stability of the π -mode such that the breather would also be stable.
The envelope solutions (28) with higher numbers of n, n = 2, 3, . . . , consist of n peaks whose profiles are similar
to single breathers if w(n,ψm) � 1 and n is not too high (n < 25–30). Thus, one can expect stability of the
peaks with respect to short wavelength perturbations of their shape. For long wavelength perturbations, a new
effect appears when the number of peaks per wavelength is significantly larger than one. In this case perturbations
effectively feel the averaged (over x) value of the coefficients that leads to (36) and (37). This results in a long
wavelength modulation instability, as in (36) and (37) for the π -mode, but with averaged values of coefficients.
The long wavelength perturbations do not change the shape of individual peaks but lead to the modulation of the
peak amplitudes. This long wavelength instability is illustrated in Fig. 5a and b where the energies of oscillators ei
are plotted for n = 16 and two initial conditions, E = 5(ψm = 0.2) and E = 20(ψm = 0.4), at t = 11, 800 and
3500 s, respectively. Growing perturbations of initially equal amplitudes with the wavelength λ = 64 and 32 are
well described by the theory if averaging is taken into account by reducing their amplitudes to ψm = 0.1 and 0.2.

Since the initial conditions of much numerical work are taken to be normal modes of the linear problem they
are different from nonlinear envelope solutions at the same energy. Normal modes are wider and, therefore, their
amplitudes, ψi , are less than the amplitudes of corresponding nonlinear solutions, ψm. If the value of the difference
.ψ = ψm−ψi is not too large,.ψ/ψm ≤ 0.4, a relaxation takes place in the form of regular oscillations ofψ(x, t)
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Fig. 5. Dynamics of the modulational instability of the periodic equilibrium with many peaks (n � 1). The curves show the profile of the
normalized oscillator energies ei versus i at a time when a long wavelength modulational instability is visible. (a) E = 5, n = 16, t = 11, 800 s;
the estimate of the most unstable wavelength, λm = 64, is in a good agreement with the observed wavelength. (b) E = 20, n = 16, t = 3500 s;
the estimate of the most unstable wavelength, λm = 32, is in a good agreement with the observed wavelength.

around the equilibrium solution of the same symmetry of amplitude.ψ . If.ψ is large, then the relaxation follows
another scenario in whichψ(x, t) oscillates around an envelope solution of a different symmetry with higher values
of n. This process is more favorable because the equilibrium amplitude of an envelope solution with a higher value
of n is lower and, therefore, closer to the initial amplitude at a given energy. A transition from a regular oscillation
regime (with conservation of symmetry) to a breakup regime (with change of n) has a threshold depending on the
initial amplitude or, equivalently, the energy of the initial state. The transition energyEtr depends on the value of n of
an initial normal mode. Numerical results show that the transition energyEtr , starting from a normal mode, increases
with n, approximately as n2, provided n is not too large. This dependence can be explained qualitatively with the
use of the nonlinear parameter w which gives a measure of the difference between strongly nonlinear and almost
linear profiles of the envelope solutions. Ifw � 1, the difference is of the order of 1 also,.ψ � ψm, which roughly
corresponds to the transition from a regular to a breakup regime. From the above it follows thatψtr ∝ n andEtr ∝ n2.
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Fig. 6. Snapshots of oscillator energies ei versus oscillator number i at successive times, illustrating the dynamics of relaxation from an initial
state around the nearest equilibrium state. The dashed line shows the profile of the equilibrium envelope solution with the same initial energy
and symmetry. (a) The case of regular oscillations without breakup of symmetry at low energy E = 0.65, n = 1; profiles of Ei are shown at
t = 0 and 1800 s which correspond to the initial state and maximum of deviation of the envelope function from the initial state. (b) Illustration
of the symmetry breaking at higher energy, E = 1.29, n = 1; the two distributions shown are the profile having initial symmetry at t = 1000 s
and the transition to the symmetry n = 2 at t = 2000 s.

These conclusions are illustrated in Fig. 6 where snapshots of numerical results obtained at low energies and
n = 1, initially, are given at two times. In Fig. 6a, the case of regular oscillations with n = 1 andE = 0.65 is shown.
The energy of the individual oscillators are plotted versus i, with the equilibrium profile marked with a dashed line;
the period of oscillations is T = 4000 s. This initial state is close to the transition to the breakup regime. The case
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of a symmetry breaking oscillation for n = 1 but higher energy E = 1.29 is shown in Fig. 6b, where a periodic
transition to the symmetry n = 2 is observed; the period of oscillation is T � 4500 s.

For the usual initial condition of our numerical study, with the initial mode γ = 120, the initial modulation of
the envelope is primarily as in Fig. 2. Depending on the energy this may or may not correspond to the “closest”
underlying equilibrium. Since at high initial energies the relaxation process generally goes to a higher n-number,
we therefore expect this initial condition to yield nine or more localized structures during the initial phase of rapid
evolution. This is, in fact, what has been observed, with more structures developing at higher energies. These results
bear further investigation over a wide range of initial conditions.

5. Breather coalescence

After a set of CBs have been formed, on a short time scale, by a modulational instability or breakup relaxation,
the breathers coalesce, on a longer time scale, into a single chaotic breather. This process has been well documented,
numerically [14,18,19,26], and the process has been studied in more detail in [22]. In fact, the physics is difficult to
understand completely, and quantitative comparison with theory, as developed in [22], did not agree with detailed
numerical results [19]. Our approach will be to follow the overall calculation program from [22], extended to
include larger amplitude breathers where numerics can be conveniently carried out; then to examine, numerically,
the various assumptions that enter into the calculations to see if theoretical estimates can be improved.

5.1. Analytical estimates

The basic physical notions are that some number of chaotic envelope breathers are formed, related to a combination
of the fastest growing mode of the modulational instability, the initial condition symmetry, and relaxation process.
These chaotic breathers are moving, in the manner of their low-frequency soliton cousins, and therefore collide with
one another. Since the CBs are not exact nonlinear solutions to the underlying equations, they interchange energy
in the interactions, and also take and lose energy against existing background modes. In a restricted situation, this
process has been described theoretically [24], showing that energy is on average transferred from smaller to larger
structures. The end result is then a single large structure. To estimate the time scale for the coalescence, the time
scale τB is constructed as [22]

τB � l

vB
� 1

nBσvB
, (38)

where vB is the breather velocity, and the mean free path l is related in the usual way to the density of breathers
nB and the effective cross-section for absorption of colliding breathers σ . The calculation in [22] proceeds from
Eq. (13) (without a4 terms) in the form of Hamiltonian equations for Ψ (x, t) and Ψ ∗(x, t) introduced through a
complex amplitude function

ψ(x, t) = 1
2 (Ψ (x, t) e−iωt + Ψ ∗(x, t) eiωt ). (39)

Dropping the terms with the second time derivatives (Ψ̈ � ωΨ̇ ) and using the RWA yields canonical Hamiltonian
equations

iωΨ̇ = δH

δΨ ∗ , −iωΨ̇ ∗ = δH

δΨ
, (40)

whereH is defined byH = ∫
H dx with a Hamiltonian density

H = − 1
2 {|Ψx |2 − 6β|Ψ |4 + 6β[|Ψ |2|Ψx |2 + 1

4 (Ψ
2Ψ ∗2 + Ψ 2Ψ ∗2)]}. (41)
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Equations (40) describe slow variation of the envelope and they have the integrals of motion [24]

H =
∫
H dx, P = − i

2

∫
(ΨΨ ∗

x − Ψ ∗Ψx) dx, N =
∫

|Ψ |2 dx (42)

the energy, momentum and number of quasi-particles, respectively. These results are then used to estimate vB in
(38) from the defining quantities in (42), which is evaluated in [22] within the approximation of a small amplitude
traveling solution, with N → ∞, to obtain

Ψ (x, t) = ψm exp(ikx − iΩt)

cosh [
√

6βψm(x − vBt)]
. (43)

Expression (43) is not an exact solution to (40) but satisfies these equations for a reduced Hamiltonian (41) in which
the last three terms are dropped. In this approximation,Ω is the solution to the dispersion relationΩ = ( 3

2β)ψ
2
m− 1

4k
2

while the wave vector

k = −vB(ω +Ω) � −2vB. (44)

The velocity vB plays role of the group velocity of the wave packet. Eq. (44) is equivalent to the usual relationship
vB = ∂Ω/∂k and defines k as a function of vB. The value of vB by itself is not defined in this approach and is
considered as a free parameter. To define the values of vB an additional argument is used in [22], that due to the
interaction of quasi-particles trapped inside the breather quasi-equilibrium values of k and vB are established, for
which the Hamiltonian,H = 0. In analogy with the classical oscillator this statement was called a “virial theorem”.
Applying this theorem vB is found from (42) to be a linear function of the amplitude

vB =
√
β

2
ψm. (45)

Note that k in (44), using (45), is k = √
2βψm which is not equal to km = √

12βψm obtained in (36) for the fastest
growing mode of the modulational instability, but has the same scaling. Continuing the argument from [22] the
density of breathers nB, as obtained from the modulational instability at small amplitude, is

nB � kmax

2π
� (3β)1/2ψm

3
, (46)

and σ is taken from a Born approximation for weak scattering to have proportionality

σ ∝
(∫

Uint dx

)2

∝
(∫

ψ1ψ2 dx

)2

∝ (ψ2
md)

2 ∝ ψ2
m. (47)

Substituting these scalings in (38) leads to the scaling τB ∝ ε−2
B , where εB = EB/N is the energy density of

the breathers. Recent numerical investigations of the time scale for coalescence, in an energy range that is easily
accessible numerically, produced the scaling for the time required to obtain a single CB [19], τB ∝ ε−1, in
contradiction to the small amplitude result (more precisely τB ∝ E−1 since N was held constant).

Since numerical treatments mentioned above were mostly done for relatively large energies, the low amplitude
scalings (45) and (47) are not applicable to this case and have to be extended to high amplitudes. We first reconsider the
concept of breather velocity for high amplitude. For analysis of nonstationary envelopes, which describe relaxation,
instability, or breather translational motion, we rewrite the basic equation (13) in the form of two-coupled equations
for amplitude q(x, t) and phase φ(x, t) which are related to ψ(x, t) as

ψ(x, t) = q(x, t) cos(ωt + φ(x, t)). (48)
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Substituting (48) in (13) and collecting terms proportional to sin(ωt + φ(x, t)) and cos(ωt + φ(x, t)) leads to
coupled equations for the phase φ(x, t) and amplitude q(x, t)

qφtt + 2qt (ω + φt )+ 2qxφx + qφxx + 12βq2qxφx + 3βq3φxx = 0, (49)

qtt − (ω + φt )2q + 4q + qxx − qφ2
x + 12βq3 + 9βq(qqx)x − 6βq3φ2

x = 0. (50)

To analyze a moving breather, we will use (49) and (50) and choose solutions in the form q(x, t) = q(x −
ut), φ(x, t) = φ(x − ut). Derivatives of these functions with respect to their arguments ξ = x − ut, are introduced
as q ′ and φ′. Substituting these forms into (49) and (50) with qt = −uq′, φt = −uφ′, yields two-coupled ordinary
differential equations for φ and q

q(1 + u2 + 3βq2)φ′′ + 2q ′(1 + u2 + 6βq2)φ′ = 2uωq ′, (51)

(1 + u2)q ′′ + (4 − ω2)q + 12βq3 + 9βq(qq′)′ + 2ωuφ′q − (φ′)2(1 + u2 + 6βq2)q = 0. (52)

Eq. (51) is linear with respect to the first and second derivatives of φ and therefore has an exact solution (without
singularity at q = 0)

φ′ = uω

1 + u2 + 3βq2
. (53)

Substituting (53) in (52), multiplying by q ′ and integrating over ξ yields a first integral

(1 + u2 + 9βq2)q ′2 +
(

4 − ω2 + ω2u2

1 + u2 + 3βq2

)
q2 + 6βq4 = 0, (54)

where the constant of integration is chosen to be zero to provide zero boundary conditions at infinity. The frequency
of the moving breather depends on its amplitude and velocity and can be obtained from (54) applied to the point
ξ = 0, where the amplitude q(ξ) reaches its maximum, qm

ω2 = (4 + 6βq2
m)

(
1 + u2

1 + 3βq2
m

)
. (55)

Making use of this result, (54) can be rewritten in the form of an energy conserving Hamiltonian h = 1
2q

′2 +W ,
where the effective potential energyW is given by

W(q, qm, u) = − 3βq2(q2
m − q2)

(1 + 9βq2 + u2)(1 + 3βq2 + u2)

[
3βq2 + 1 − u2

1 + 3βq2
m

]
. (56)

An analysis of the expression in square brackets shows that if the speed of the breather is not too high,

|u| < (1 + 3βq2
m)

1/2 (57)

the effective potential energy is negative at 0 ≤ q ≤ qm and graphs ofW(q) are similar to the curve shown in Fig. 3
for the case C1 = 0. Solving for q ′ from (54) and integrating over ξ yields the breather amplitude q(ξ) which looks
similar to the profile of the standing breather (29). If the inequality (57) is not satisfied, then the effective potential
energy (56) becomes positive in some vicinity of q = 0, when (1 + 3βq2

m)
1/2 < u < 1 + 3βq2

m; it is positive
along the entire interval 0 < q < qm, when 1 + 3βq2

m < u. In both cases there are no trajectories corresponding
to breather-like solutions, so Eq. (57) is a necessary and sufficient condition for the existence of a moving breather
with arbitrary amplitude.

The new solution represents a generalization of the previous solution (43) to the case of high amplitude breathers.
The important result is the dependence of k on x and t described by (53). The wave vector k = φ′ has approximately
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Fig. 7. Dependence of the breather velocity vB on its amplitude ψm, obtained from the virial theorem. The horizontal line shows asymptotic
value of vB and ψm → ∞.

the same value as given by (44) in the tail zone of the breather and sharply decreases near the peak dropping down
to 2u/3βq2

m. Although the new solution is an exact solution to the full a2-order equation (13), the value of velocity
is a free parameter with some weak restriction (57). Similar to the calculation of vB in the small amplitude case
(45), we make use of the virial theorem based on (41) to estimate the effect of large amplitudes on breather velocity.
Expressing Ψ and Ψ ∗ in (39) in terms of q(ξ) and φ(ξ) and substituting into (41) gives a Hamiltonian density as a
function of q(ξ) and k(ξ) ≡ φ′(ξ)

H(qm, u, ξ) = − 1
2k

2q2(1 + 3βq2)− 1
2q

′2(1 + 9βq2)+ 3βq4. (58)

It is possible to evaluate the first integral in (42) and formulate the virial theorem, H(qm, u) = 0, by using the
identity H = ∫

H dξ ≡ ∫
H dq/q ′. The result after some algebra and a numerical integration over dq gives the

velocity u ≡ vB as shown in Fig. 7. For low amplitude, the velocity is in agreement with (45) obtained with the use
of (43), while for high amplitude we see that vB becomes asymptotically constant. The remaining quantities that are
required to obtain the scaling (38) at high amplitude are obtained in a straightforward way. Taking the wavenumber
of the fastest growing large amplitude mode, from (37), we find that nB ∝ kmax = const., independent ofψm, which
is consistent with the asymptotic assumption of vB = const. if we admit the above mentioned relationship between
k and km. From the asymptotic large amplitude expansion of I , in (33), we have ψm ∝ E1/4 (with n independent
of ψm and roughly half the energy in the proto-breathers). Performing the integration in (47) for the high amplitude
case when the width of the breather d � 5 = const., we find

σ ∝ ψ4
m ∝ E. (59)

Combining the results of vB and nB independent of initial E, with (59), in (38), this gives, at the start of the
coalescence, that τB ∝ E−1. We must, however, follow the time evolution of the coalescence process until a single
breather is formed. To do this we note that the time constant is governed by n−1

B (dnB/dt) = nBσvB, since nB

decreases as E−1
B and σ increases as EB, i.e., if the total energy in the breathers remains nearly constant, then
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nBσ = const. during the coalescence. As found numerically (see below) vB is relatively constant during this
process, and thus we conclude that n−1

B (dnB/dt) = 1/τ , a constant, during the decay. Thus the final proportionality
for the scaling of coalescence, assuming EB ∝ E, is

τB ∝ E−1, (60)

which agrees with the numerical coalescence time.

5.2. Numerical results

We perform numerical calculations on the discrete oscillator chain to check the approximations and also account
for discreteness effects. We first enquire if the decay is characterized by a single time constant, i.e., if the total number
of breathers NB obeys (1/NB)(dNB/dt) = 1/τ , a constant. Taking typical cases of initial energy E = 20, 50 in
mode γ = 120, we plot lnNB versus t , in Fig. 8a and b, respectively. The resulting decays are straight line,
indicating the constancy of τ .

This constancy of τ in the decay process was found to hold well for initial energies 20 ≤ E ≤ 100, which is a
typical intermediate energy range. Using results like those in Fig. 8a and b the results in Fig. 9 are obtained, in the
range 20 ≤ E ≤ 250. A straight line gives a power law fit to the coalescence time τB versus energy, with a best fit
giving τB ∝ E−1.12. This is almost the same as the scaling of τB ∝ E−1.19 in [19] using a somewhat more qualitative
criterion for τB. Note that τB is not the same as the time constant τ . Typically, there are 8–9 initial proto-breathers
which coalescence, with the time τB being the time necessary for a single chaotic breather to be established. Since
in all cases the initial conditions have most of the energy in mode 120, the 8–9 initial peaks tends to be a strong
initializing effect for the proto-breathers, as already mentioned in Section 4.

A further confirmation of our picture of the coalescence process is seen in Fig. 10 and 11. In Fig. 10, for the
case of E = 20, the motion of the largest peak is followed. During the initial stage of proto-breather formation,
the motion is not well defined as early unstable motion and collisions do not conserve a single proto-breather
having the maximum amplitude. At time of 104 s the largest breather is established and grows in energy with
associated increasing velocity. The velocity at relatively large amplitude then remains fairly constant in the range
2 × 104 s ≤ t ≤ 4 × 104 s, after which time Fig. 8a indicates the existence of a single dominant breather. As seen in
Fig. 11, the energy of the largest breather continues to grow, statistically, during this time. For 4×104 s ≤ t ≤ 105 s,
in Fig. 10 the single chaotic breather gradually slows down in a somewhat uneven fashion. The explanation of this
effect is not within the envelope theory but can be quantitatively understood by two effects, the well-known pinning
effect due to the discreteness [18], and the continual interaction with background modes containing a total energy
of the order of the breather energy. As seen in Fig. 11, during this period the main breather energy is growing
slightly. The breather is taking energy from high-frequency modes with similar symmetry and giving energy to
low-frequency modes that do not have this symmetry. As described previously [19] and will also be developed in
Section 6, the breather will decay at longer times, as energy continues to be transferred to low-frequency modes and
equipartition is approached. Similar dynamics occurs at higher energies, but more rapidly so that the phenomena
are not as clearly observed.

6. Breather decay

In the usual picture of breather stability, the physical mechanism by which the breather loses stability is that
the breather frequency becomes resonant with a linear normal mode [15,16,27]. This explanation is not directly
applicable to our problem as the breather frequency is higher than the highest mode; e.g., for E = 50 (β = 0.1,



V.V. Mirnov et al. / Physica D 157 (2001) 251–282 269

Fig. 8. Numerical dependences of the number of breathers, lnNB(t), versus time. The straight line curves indicate the constancy of the decay
time τ during the coalescence from 8–12 breathers to two breathers. The final coalescence to one breather has less statistical accuracy. (a) Initial
energy E = 20, n = 9. (b) Initial energy E = 50, n = 9.
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Fig. 9. Numerical results illustrating the dependence of the decay time ln τB versus initial energy lnE obtained from results at various energies
as described in Fig. 8.

N = 128), the CB has a frequency ωB = 2.62 while the highest mode frequency isΩh � 2. However, we know this
breather is not completely stable (a CB), as it was formed in the chaotic portion of the Hamiltonian phase space.
Within the usual theory, the process then becomes quite subtle, as it depends on the relatively small continuous
spectrum of the chaos.

Fig. 10. Time dependence of the oscillator number imax defined as the position of the oscillator having a maximum energy in comparison with
all other oscillators at a given time t . After 104 s, when a largest breather is established, it shows the position of that breather.
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Fig. 11. Time dependence of the maximum energy eimax of the oscillators described in Fig. 10. After the largest breather is established it
corresponds to the energy of the oscillator at the peak of the breather.

Although the dominant structure is the CB, the mode spectrum, in which the CB can be decomposed, plays an
important role. For energy transfer from low-frequency to high-frequency modes, it was shown that the stochasticity
developed in low-frequency beat oscillations could transfer energy to the high-frequency modes via the Arnold
diffusion mechanism. The key requirement for energy transfer on a time scale that is not exponentially slow is
that the beat oscillation frequency be as high or higher than the mode (or beat mode) to which the energy is being
transferred [9]. In a subsequent paper [20], the scaling Teq (low to high) ∝ (E/N)−3 was predicted and confirmed
numerically. In [19], we used the same formalism to predict the scaling Teq (high to low) ∝ (E/N)−2, which we
found numerically. However, the predicted estimate of the time to equipartition was nearly 2 orders of magnitude
shorter than the numerical result. Our current study of breather dynamics has revealed that the method was not
applied correctly in [19] when the dominant dynamics is the breather, rather than the normal modes. Re-examining
the beats in the high-frequency normal modes indicates that the beat frequency is

ΩB = ωB −Ωh, (61)

i.e., the difference between the frequency locked to the breather and the background-free normal modes. The
interaction is with the high-frequency normal modes so we take Ωh � 2. For E = 50 with ωB = 2.62, we find, in
Fig. 12, the dominant beat frequency ΩB � 0.6, which is close to the value ΩB � 0.62 given by (61).

The key assumption in the calculation is to require, for fast Arnold diffusion [9], that

ΩB ≥ δΩl = πδl

N
, (62)

where δl is the number of low-frequency modes to which energy can be transferred, which are taken to correspond
one-to-one with high-frequency modes, δk, δl = δk. To estimate the energy transfer, we transform the Hamiltonian
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Fig. 12. Time dependence of the energy of normal mode Ej for j = 121 and 122 during the time interval 50 000 s < t < 50 050 s when a single
chaotic breather is well established (E = 50, n = 9).

(1) to normal modes, using (6) and (7), and then introducing the canonical action–angle variables (I, φ) through
the transformationQj = √

2Ij /Ωj cosφj and Pj = √
2IjΩj sin φj , we obtain [9]

H =
∑
j

Ωj Ij +
(

β

8N + 8

) ∑
i,j,k,l

G(i, j, k, l)
√
ΩiΩjΩkΩlIiIj IkIl ang(ijkl), (63)

where ang(ijkl) ≡ cosφi cosφj cosφk cosφl . The coefficients G, as calculated in [3,9] are

G(i, j, k, l) =
∑
P

B(i + j + k + l), (64)

where P represents the eight permutations of sign of j, k and l and the function B(x) takes the value 1 if the
argument is zero, −1 if the argument is ±2(N + 1), and zero otherwise. The selection rule (64) follows from the
quartic nature of the coupling. Taking the derivative ofH with respect to a high-frequency angle, we obtain energy
transfer from any high-frequency mode to all accessible low-frequency modes in the form

dEj
dt

� CjΩj
(
β

N

)
ClδlEjEl. (65)

The quantity Clδl is reduced from the quartic sum by the following. The derivative reduces the sum by one index,
and the selection rule (64) by a second index, so the sum runs over some (δl)2 modes. Assuming every quartic term
in this sum is typically of the same size and taking the phases to be random, then the effective number of terms
is Clδl, where Cl was estimated in [20] to be Cl = 1

4 . The quantity Cj is an efficiency of energy transfer by the
Arnold diffusion mechanism, which must be less than 1

2 (see [1]) and we take Cj = 1
4 for definiteness. Note that

both factorCl andCj were omitted in [19] which contributed to the underestimation of the equipartition time in that
paper. However, our main reworking of that calculation is a new determination of δl from (62) usingΩB from (61).

From (32), we calculate EB(ψm) and from (21) we approximate ωB, both for n = 1 (a single breather). From
these results, and using (61) we obtain a graph ofΩB(EB) as given in Fig. 13 on log–log scale, which we compare
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Fig. 13. Theoretical curve and numerical points illustrate the dependence of beat frequency, lnΩB, on energy, lnEB, indicating a nearly linear
proportionality in the energy range investigated.

with numerical results for ΩB. We see that over the main range of energies investigated, we find, approximately,
ΩB ∝ EB (slope of unity) and furthermore we have an approximate valueΩB � 0.2βEB. Substituting this, in (62),
with the equality, we have

δl = N

π
× 0.2βEB. (66)

Since, within our approximation, dEj/Ej = dEB/EB, (65) can be rewritten as

dEB

E2
B

= −0.2βCjClΩj
β

N

N

π
El dt. (67)

As in previous work, we integrate from EB (initial) to Ed/N , where d = n
(init)
b is the initial number of oscillators

in the breather, and El is integrated from zero to E/N . Using the simplest assumption that El(t) = (t/Teq)E/N , a
diffusive process, and taking d � 5, we obtain

Teq � 80π

5

(
N

βE

)2

, (68)

where we have substitutedCj = Cl = 1
4 andΩj = 2. We have obtained the scaling Teq ∝ ε−2, as found numerically

in [19]. For β = 0.1, N = 128 and E = 50, Teq � 3.3 × 104. This is about a factor of 5 shorter than the time of
Teq � 1.6 × 105 s reported in [19].

There are various arguments to conclude that we have somewhat underestimated the time to equipartition. Par-
ticularly, we have not explicitly considered the complicated process, at intermediate times when the principle CB
has been formed but not decayed, and is transferring energy from high-frequency modes that are not part of the
breather, to low-frequency modes, using the breather as a catalyst for the transfer. To see these effects we repeat,
in a slightly different form from [19], computations of nosc and neff , given in Fig. 14a and b, for E = 50, over a
time scale in which the various longer time scale dynamical processes can be seen. The coalescence time period is
seen for t < 2 × 104 s during which nosc is decreasing rapidly. This is followed by a period (.t ∼ 105 s) in which
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Fig. 14. Time dependence of: (a) nosc(t), and (b) neff (t). The horizontal lines are theoretical asymptotes.

a single breather is first increasing and then decreasing slowly as energy is transferred from high-frequency modes
to low-frequency modes. Finally, there is the larger increase in nosc, during which time the breather energy decays,
until equipartition is reached at roughly the time t � 3 × 105 s. An average over 10 initial conditions gave the value
of Teq � 1.6 × 105 s, reported in [19]. The equipartition level at nosc � 0.7 and neff � 0.6 can be explained by
fluctuations, as described in [12,18]. There are some subtitles, not reported in those references, which we describe
in Appendix D. We have continued the numerical calculation to t = 107 s and find the equipartition values to be
maintained very closely.
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7. Conclusions

The FPU-β chain of equal masses coupled to nearest neighbors by hard springs with quartic nonlinearity has a
very interesting dynamics, with quite different behavior depending on whether the energy is initially in the low- or
high-frequency part of the spectrum. Most investigations have taken the initial conditions in a low-frequency linear
mode or modes for which neighboring oscillators are mostly in phase. The process by which a resonant interaction of
a few low-frequency modes can lead to stochastic beat oscillations, that diffusively transfer energy to high-frequency
modes, has been well studied.

In contrast, if the energy is placed in a high-frequency mode or modes, for which neighboring oscillators are
primarily out of phase, a more complicated dynamics ensues. High-frequency mode initial conditions have phase
symmetry of neighboring oscillators close to that of a localized exact breather, but have a different amplitude profile.
The resulting dynamics consists of three stages. First, there is an initial stage in which the mode breaks up into a
number of breather-like structures. Second, on a slower time scale, these structures coalesce into one large unstable
structure, called a CB. Since a single large CB closely approximates a stable breather, the final decay stage, toward
equipartition, can be very slow.

Considerable insight into the behavior of a nonlinear oscillator chain, starting from high-frequency initial con-
ditions, can be obtained by introducing an envelope function for the displacements of the oscillators. The initial
conditions for the envelope only contain significant long wavelength perturbations. For the envelope function an
expansion is then possible to obtain a nonlinear PDE which approximates the behavior of the discrete system.

For the quartic FPU chain with fixed ends, Taylor expanded to fourth-order in the separation between oscillators,
we have obtained PDEs approximating the envelope function of the discrete chain. The resulting equations have
been solved to obtain nonlinear periodic structures similar to isolated breather solutions, showing that the width
decreases with the amplitude at low amplitude and becomes asymptotically constant at high amplitude, analogous
to the behavior of isolated stable breathers.

We have numerically examined the relaxation of the initial conditions toward equilibria. Underlying stability
considerations, and the proximity of equilibria with other symmetries, lead to breakup of the initial symmetry, if the
energy is sufficiently high. The number of chaotic breathers established in this process, starting from a symmetry of
a few initial peaks, is usually larger than the initial number of peaks, but depends on the energy. The particular case
studied in [19], and also in this paper, of n = 9(γ = 120) led to results of 8–12 proto-breathers in the energy range
20 < E < 200. This result can be qualitatively understood by a balance between a minimizing of the oscillation
amplitude within a peak with a tendency for the peaks to remain isolated.

After a set of CBs are formed, they move slowly in random directions, colliding with one another, and losing or
gaining energy in the interaction. On an average, the large structures absorb energy from the smaller ones, as expected
from general theoretical considerations. The time constant for coalescence into a single CB was estimated in [22]
from the relation τB � (NBσvB)

−1, whereNB is the breather number, σ a collision cross-section for absorption, and
vB a characteristic velocity. Using this procedure, extended to higher energies, we obtained reasonable agreement
with the numerical scalings of τB ∝ E−1. Furthermore, we demonstrated that τ ≡ NB(dNB/dt)−1 is essentially
constant during the decay, such that τB ∝ τ , in agreement with our theoretical prediction.

To calculate the scaling and the time Teq to obtain energy equipartition, we adopted a theory developed for
stochastic transfer of energy from low-frequency to high-frequency modes by means of chaotic beat oscillations
[20]. We predict that Teq ∝ ε−2, as found numerically, for varying E and constant N , and furthermore were able
to calculate a value of Teq for E = 50 to within a factor of 5 of the numerical value. The numerical equipartition
values of nosc � 0.7 and neff � 0.6, for oscillators and modes, respectively, agreed with analytic values.

We conclude that the process, by which the energy initially placed in a high-frequency mode reaches equipartition
among modes, is understood. The time scales for the longer time processes can also be calculated approximately.
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The physical mechanism explains why the transfer of energy from high- to low-frequency modes is slower than
the reverse transfer. It also sheds light on the interesting question of whether nonlinear chaotic process will tend
to create coherent localized structures. The answer, at least within the context of this study, is that such localized
structures can form transiently, but the ultimate most probable state is that of equipartition among the system modes.
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Appendix A. Asymptotic expansion of I(y)

Expressing (24) in terms of y = 6βψ2
m and making straightforward transformations yields

I (r, y) = 2

π

∫ π/2

0

dα√
sin2α + r2

+ 18y

π

∫ π/2

0

dα sin2α√
sin2α + r2

1

(

√
1 + 9y sin2α + 1)

. (A.1)

Applying an asymptotic expansion at r → 0 for the first integral and putting r = 0 in the second one gives

I (r, y) = 2

π
ln

4

r
+ 18y

π

∫ π/2

0

dα sin α√
1 + 9y sin2α + 1

. (A.2)

After a few substitutions, the integral is calculated analytically yielding an asymptotic expression for I (r, y),

I (r, y) = 2

π
ln

4

r
+ 6

√
y

π
arcsin

√
9y

9y + 1
− 1

π
ln(9y + 1). (A.3)

Appendix B. Energy of the nonlinear envelope solutions

Expression (1) for energy H can be rewritten in terms of envelope function ψi(t) = (−1)iqi(t):

H =
N+1∑
i=0

[
1

2
ψ̇2
i + ψ2

i + ψi+1ψi + β

2
(ψ4
i + 3ψ2

i+1ψ
2
i + 2ψ3

i+1ψi + 2ψi+1ψ
3
i )

]
. (B.1)

Substituting Taylor’s expansion (12) and collecting terms proportional to different powers of a up to a2 yields

H = 1

a

∫ (N+1)a

0
dx

{
1

2
ψ2
t + 2ψ2 + 4βψ4 + a(ψψx + 7βψ3ψx)+ a2

2
[ψψxx + β(7ψ3ψxx + 9ψ2ψ2

x )]

}
.

(B.2)

Introducing the dimensionless variable x → x/a, performing an integration by parts and taking into account
boundary conditions ψ(0, t) = ψ(N + 1, t) = 0 yields

H = 1

12
[ψ2
x (0)− ψ2

x (N + 1)] +
∫ N+1

0
dx

(
1

2
ψ2
t + 2ψ2 + 4βψ4 − 1

2
ψ2
x − 6βψ2ψ2

x

)
. (B.3)
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Applying this expression for the harmonic dependence ψ(x, t) = ψ(x) cosωt and averaging over time with
cos2ωt = 1

2 , cos4ωt = 3
8 gives

H = 1

24
[ψ2
x (0)− ψ2

x (N + 1)] + 1

4

∫ N+1

0
dx(ω2ψ2 + 4ψ2 − ψ2

x + 6βψ4 − 9βψ2ψ2
x ). (B.4)

Substituting (28) into (B.4) yields Eq. (32) for the energy of the system. For the case of a strongly nonlinear envelope,
putting r = 0, allows us to express energy as

E =
(

2nψm√
6β

)
Z(y), (B.5)

where y = βψ2
m and

Z(y) =
∫ π/2

0
dα(1 + 9βψ2

m sin2α)1/2(3βψ2
m sin3α + 2 sin α). (B.6)

The integral Z(y) is calculated exactly, giving

Z(y) = 25

24
+ 9

8
y + (23 + 234y + 243y2)

arctan(3
√
y)

72
√
y

. (B.7)

Appendix C. Conditions of validity of a2-approximation

Analytic results in Section 3 are based on the reduced form (18) in which all terms proportional to a4 and higher
powers of a are dropped. We now examine their accuracy numerically solving (14) which includes all terms of order
a4. Comparing linear terms, one concludes that the reduced linear form of (14) has one additional term, 1

12ψxxxx,
with respect to (15). Its solutions with zero boundary conditions at x = 0 and N + 1 have eigenfrequencies

ω2 = 4 − q2
n + 1

12q
4
n, qn = πn

(N + 1)
(C.1)

higher by the factor 1
12q

4
n than given by (17).

The nonlinear equation (14) has an exact first integral which can be obtained by multiplying byψx and integrating
over x giving

(−ω2 + 4)ψ2 + (1 + 9βψ2)(ψ2
x + 1

6ψxψxxx − 1
12ψ

2
xx)+ β(6ψ4 + 3ψψ2

xψxx + 3
8ψ

4
x ) = C1. (C.2)

Choosing, C1 = 0, we select the class of localized, breather-like solutions for a chain of oscillators that is infinitely
long (N → ∞). The breather envelope function has one maximum, ψm, and ψ → 0 at x → ±∞. Applying (C.2)
at x = 0, with ψx(0) = 0, ψxx(0) < 0, yields an equation for the eigenfrequency

ω2 = 4 + 6βψ2
m − 1

12 (1 + 9βψ2
m)fxx(0)

2, (C.3)

where f (x) is the normalized ψ(x). The result is that breather frequency, calculated from (14) to order a4, is less
than the value in (21), to order a2. Note that for linear modes (C.1) the a4 term causes an increased frequency.
Substituting (C.3) into (C.2), the factor fxx(0) plays the role of an eigenvalue, which is found numerically by
applying the shooting method to (C.2) with the boundary conditions, ψ(±∞) = 0, ψx(0) = 0. The constraints
are applied at some distant points ±x0, which is possible due to the existence of analytic asymptotic solutions at
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x → ±∞, where ψ(x)→ 0 and, correspondingly, all β-dependent terms in (C.2) can be omitted. This leads to the
exponential profile for the breather tail

ψ(x)→ C exp(−κ|x|), x → ±∞, (C.4)

where the rate of decay, κ , is determined by substitution of exponentially small (C.4) into Eq. (C.2) with β-terms
neglected, obtaining

κ2 =
√

36 + 72βψ2
m − fxx(0)(1 + 9βψ2

m)− 6. (C.5)

Expression (C.5) is valid if (1 + 9βψ2
m)f

2
xx(0) < 72βψ2

m.
Substituting the infinite Taylor’s series (12) into the linearized equation (2) and assuming an exponential law of

decay (C.4) yields a universal relation

ω = 2 cosh
κ

2
, (C.6)

which is an exact result.
The factor fxx(0) is used to estimate the half-width of the bulk envelope function as∆ � |fxx(0)|−1/2, while κ−1

describes the half-width of the tail. From analytic results for a breather, derived from Eq. (18), we obtained

fxx(0) = − 6βψ2
m

1 + 9βψ2
m

. (C.7)

As is seen from both (C.6) and (15) in the a2-approximation, κ−1 = (6βψ2
m)

−1/2. The factor ∆, calculated from
(C.7), equals κ−1 in the small amplitude limit and becomes large, ∆ = ( 3

2 )
1/2, in the strongly nonlinear regime,

indicating that, for large amplitude, the breather envelope function has a two-scale structure. Numerical integration
of (C.2) is presented in Fig. 15, illustrating dependencies of ω, ∆ and κ−1 on ψm in both a2 (dashed line) and a4

(solid line) approximations. The breather profiles described by (29) thin line, (32) dashed line, in a2-approximations
and the a4 results based on numerical integration of (C.2) are illustrated in Fig. 16 for a few typical values of ψm.
Figs. 15 and 16 show that there is no significant difference between the a2 and a4 approximations up to ψm � 2;
a limit of applicability of Eq. (18) and the solution in (29). Analytical small amplitude approximation (30) is in a
good agreement with the numerical curves at lower amplitudes, ψm ≤ 0.5.

Appendix D. Asymptotic values of neff and nosc in equipartition

The effective number of normal modes containing energy is defined by

neff = 1

N
exp


−

j=N∑
j=1

ej ln ej


 , (D.1)

where ej = Ej/Eh are the normalized linear energies of the normal modes

Ej = Ωj(Q2
j + P 2

j ), (D.2)

where Eh=
∑N

1 Ej given by (5). Only the quadratic terms in the potential energy are taken into account in (D.2) so
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Fig. 15. Dependences of (a) ωB, and (b) ∆ and κ−1 on breather amplitude, ψm; the solid curves correspond to a4-approximation, the dashed
curves to a2 approximations.

thatEh is not the total energyE and not exactly conserved during the relaxation. The effective number of oscillators
containing energy

nosc = 1

N
exp

[
−
i=N∑
i=1

ei ln ei

]
(D.3)
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Fig. 16. Comparison of the breather profiles obtained in a2-approximation (Eq. (29), thin solid curves); (Eq. (30), dashed curves) and in
a4-approximation (Eq. (14), thick solid curves) for three values of the amplitudes; (a) ψm = 0.5, (b) ψm = 1, (c) ψm = 10.

is based on the normalized oscillator energies ei = Ei/E which includes all terms so that
∑N

1 Ei is conserved
exactly

Ei = 1
2p

2
i + 1

4 [(qi+1 − qi)2 + (qi − qi−1)
2] + 1

8β[(qi+1 − qi)4 + (qi − qi−1)
4]. (D.4)

Depending on the relative variations of energies ei,j , from one mode or oscillator to another, the values of neff or
nosc vary in the range from 1/N to 1. The upper limit corresponds to the equipartition state where all ei and ej are the
same and equal to 1/N . Numerical curves plotted in Fig. 15a and b, forN = 128 andE = 50 give asymptotic values
at t → ∞ of neff � 0.6 and nosc � 0.7, which are lower than the upper limit values nosc = neff = 1, as expected due
to the fluctuations of energies ei,j . In order to calculate the effect we introduce a deviation δei,j from equipartition

ei,j = ei,j + δei,j . (D.5)

Substituting (D.5) into (D.1) or (D.3), expanding the logarithmic function, which holds both for modes and oscil-
lators, as ln(1 + δei/ei) = δei/ei − 1

2 (δei/ei)
2 and performing the summation over i yields

neff = nosc = 1

N
exp

{
−Nē ln ē − Nδe2

2ē

}
= exp

{
−Nδe

2

2ē

}
. (D.6)

Taking ē = 1/N and making the assumption of normal statistics that for each normal mode δe2 = ē2 (this is
confirmed by calculations), gives an asymptotic value nosc = neff = exp(−0.5) = 0.61. This calculation illustrates
why the result does not depend on the number of oscillators if N is sufficiently large and is in apparent good
agreement with the numerical simulation for neff , but not for nosc.

For an alternative perspective, we note that the sums on the RHS of (D.1) and (D.3) can be treated as ensemble
averages of the function e ln e (if, of course, modes (oscillators) are statistically independent)

e ln e = 1

N

i=N∑
i=1

ei ln ei . (D.7)
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The LHS of (D.7) is calculated as a mean value of e ln e averaged over accessible states of the normal mode
(oscillator) which are smoothly distributed in the phase-space due to energy exchange with the rest of the N − 1
modes. They play the role of a heat reservoir while the total energy of the combined system is conserved. A canonical
distribution can be used to describe probabilities of the different states of a single normal mode (oscillator), with a
partition function Z defined by condition

Z =
∫ ∞

−∞

∫ ∞

−∞
exp

{
−Ej(P,Q)

T

}
dP dQ. (D.8)

The effective temperature of the heat bath T is chosen such that Ej = E/N with Ej given by (D.2). Performing
the integration over P andQ yields an expression for Z. The mean value of Ej is then calculated as

Ej = 1

Z

∫ ∞

−∞

∫ ∞

−∞
EJ (P,Q) exp

{
−Ej(P,Q)

T

}
dP dQ ≡ T . (D.9)

Substituting these results into the integral for the mean value of e ln e yields

e ln e = 1

N

∫ ∞

0
x ln

( x
N

)
exp(−x) dx. (D.10)

Multiplying (D.10) by N and substituting in (D.1) gives an expression for the asymptotic value of neff

neff(∞) = 1

N
exp[−Ne ln e] = 0.655, (D.11)

which slightly exceeds the numerical value 0.6 found in Fig. 15a.
In the case of oscillators, the canonical distribution has a more complicated form because the energy of each

oscillator i depends on three variables x = qi+1 − qi, y = qi − qi−1 and p = pi . Correspondingly, expressions for
Z, the mean values of Ei , and e ln e take the form

Z =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

{
−Ei(p, x, y)

T

}
dp dx dy, (D.12)

Ei = 1

Z

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ei(p, x, y) exp

{
−Ei(p, x, y)

T

}
dp dx dy, (D.13)

e ln e = 1

Z

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
Ei(p, x, y)

E

)
ln

(
Ei(p, x, y)

E

)
exp

{
−Ei(p, x, y)

T

}
dp dx dy, (D.14)

where

Ei(p, x, y) = 1
2p

2
i + 1

4 (x
2 + y2)+ 1

8β(x
4 + y4). (D.15)

The equations are integrated numerically. Given the number of oscillators N and total energy E, the mean value of
energy per oscillator Ei is found from (D.13). Equating Ei to its equipartition value, E/N , yields an appropriate
effective temperature which is then used to calculate e ln e. This leads to the asymptotic value of nosc = 0.74 that
again slightly exceeds the result of numerical calculations.
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